M1.(a) Law of conservation of <u>angular</u> momentum applies and $I_1 \omega_1 = I_2 \omega_2$ OR Law of conservation of <u>angular</u> momentum applies and angular momentum = $I \omega \checkmark$

(because no external torque acts)

Adding plasticine increases $I \checkmark$

So ω must decrease to maintain $I \omega$ constant / to conserve angular momentum \checkmark

3

3

2

(b) I × 3.46 =(I + 0.016 × 0.125²) × 3.31 ✓
 I = 0.00552 kg m² ✓ 3 sf ✓
 Useful: mr² = 2.5 × 10⁻⁴
 Sig fig mark s an independent mark
 If method correct but incorrect conversion of g to kg or mm to m, award 1 mark out of first 2 marks

(c) (i) $\Delta E = \frac{1}{2}I \omega_1^2 - \frac{1}{2}(I + mr^2)\omega_2^2$ $= [\frac{1}{2} \times 5.52 \times 10^{-3} \times 3.46^2] - [\frac{1}{2} \times 5.77 \times 10^{-3} \times 3.31^2] \checkmark$ $= 1.39 \times 10^{-3} J \checkmark$ *CE for I of turntable or I of plasticine from 2b Answers will vary depending on rounding e.g. accept 1.43 × 10^{-3}*

- (ii) Work done against friction / deforming plasticine as it collides with turntable / to move or acclerate plasticine ✓
 Allow heat loss on collision
 Do not allow energy to sound
- [9]

1

M2.(a) The (total) angular momentum (of a system) remains constant provided no external torque acts (on the system) ✓

(b)	I is the sum of the <i>m r</i> ² products for point masses <i>m</i> at radius <i>r</i> ✓ Or WTTE Not <i>m</i> is the mass and <i>r</i> the radius – must refer to point or small masses or distribution of mass	
	OR	
	$\Sigma m r^2$ with <i>m</i> and <i>r</i> defined	
	OR	
	I is a measure of the mass and the way the mass is distributed about an axis	1
	More of the satellite's mass is at greater radius \checkmark	1
	(Small change in r) gives large change in r^{e} , hence large change in I	
	OR even though <i>m</i> of panels is small, much of <i>m</i> is at a greater radius and radius is squared \checkmark	
	For 2 nd mark must refer to effect of r ² .	1
(c)	Angular momentum = 110 × 5.2 = 572 ✓	1
	N m s OR kg m² s¹ ✓ accept kg m² rad s¹	1
(d)	(Use of conservation of ang momtm) 572 = 230 × ω_{2} 🗸	1

 $\omega_2 = 572 / 230 = 2.49 \text{ rad s}^{-1}$

M3.(a) Use of $I = \Sigma mr^2$ or expressed in words \checkmark

With legs close to chest, more mass at smaller r, so I smaller \checkmark

(b) (i) Angular momentum is conserved / must remain constant OR no external torque acts √ WTTE

as *I* decreases, ω increases and vice versa to maintain *I* ω constant \checkmark OR as *I* varies, ω must vary to maintain *I* ω constant

2

1

2

[8]

(ii) (Angular velocity increases initially then decreases (as he straightens up to enter the water)).

No mark for just ang. vel starts low then increases then decreases, i.e. for describing ω only at positions 1,2 and 3.

With one detail point e.g. 🗸

- Angular velocity when entering water is greater than at time t = 0 s.
- Angular velocity increases, decreases, increases, decreases
- Maximum angular velocity at *t* = 0.4 s
- · Greatest rate of change of ang. vel. is near the start
- Angular velocity will vary as inverse of M of I graph

(c) angular. momentum = 10.9 × 4.4 = 48 (N m s) ✓

(ω_{max} occurs at minimum *I*) Allow 6.3 to 6.5. If out of tolerance e.g. 6.2 give AE for final answer

minimum I = 6.4 kg m² (at 0.4 s) \checkmark

 $6.4 \times \omega_{\text{max}} = 48$ leading to

 ω_{max} = 7.5 rad s⁻¹ 🗸

3 (Total 8 marks)